skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Juday, Glenn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Along the coasts of northern Alaska, in a treeless tundra environment, the primary wood resource for coastal populations is driftwood, a seasonal and exogenous resource carried by the major rivers of western North America. The potential of Alaskan coastal archaeological wood for tree-ring research was first assessed in the 1940s by archaeologist and tree-ring research pioneer J. L. Giddings. Despite his success, the difficulties of dendrochronological studies on driftwood and the development of radiocarbon dating during the 1950s resulted in the near-abandonment of dendrochronology to precisely date archaeological sites and build long sequences using archaeological wood in Alaska. In this study, we explored the possibilities and limitations of standard ring-width dendrochronological methods for dating Alaskan coastal archaeological wood. We focus on the site of Pingusugruk, a late Thule site (15th–17th CE ) located at Point Franklin, northern Alaska. The preliminary results have been obtained from the standard dendrochronological analyses of 40 timber cross-sections from two semi-subterranean houses at Pingusugruk. We cross-correlated individual ring-width series and built floating chronologies between houses before cross-dating them with existing regional 1000-year-long master chronologies from the Kobuk and Mackenzie rivers (available on the International Tree-Ring Databank, ITRDB ). Additional work on various dendro-archaeological collections using an interdisciplinary approach (geochemical analyses of oxygen isotopes and radiocarbon dating) will help develop and expand regional tree-ring chronologies and climatic tree-ring sequences in Alaska. 
    more » « less
  2. Abstract Forest and freshwater ecosystems are tightly linked and together provide important ecosystem services, but climate change is affecting their species composition, structure, and function. Research at nine US Long Term Ecological Research sites reveals complex interactions and cascading effects of climate change, some of which feed back into the climate system. Air temperature has increased at all sites, and those in the Northeast have become wetter, whereas sites in the Northwest and Alaska have become slightly drier. These changes have altered streamflow and affected ecosystem processes, including primary production, carbon storage, water and nutrient cycling, and community dynamics. At some sites, the direct effects of climate change are the dominant driver altering ecosystems, whereas at other sites indirect effects or disturbances and stressors unrelated to climate change are more important. Long-term studies are critical for understanding the impacts of climate change on forest and freshwater ecosystems. 
    more » « less
  3. Research Highlights: Interior Alaska boreal forest is still largely intact and forest harvest management, if applied appropriately across the forest landscape, can potentially mitigate the effects of climate warming, such as increasing wildfire and decreasing mature tree growth. Background and Objectives: This study examines historical relationships between forest growth and harvest in central boreal Alaska over the last 40 years in order to contribute to the development of sustainable forest harvesting practices. Materials and Methods: We compiled data from forest inventory and forest harvest and reforestation databases and analyzed harvesting intensity relative to growth. Results: Forest harvest management has relied heavily on natural regeneration due to a small profit margin. We found that volume harvested in the last 40 years was lower than volume growth; however, harvest activity was concentrated on the small road-accessible area and in the mature white spruce type. As a result, harvest activities need to be distributed geographically and by species in a way that prevents reduction of forest productivity or loss of ecosystem services. An expansion of the road network, or a shift in harvesting and utilization from white spruce to broadleaf would allow a significant increase in sustainable wood yield. Conclusions: There are two potential areas that could provide increased harvest, which contain a large amount of white spruce, birch, and aspen. Under rapid climate change, sustainable forest harvest management must consider the effects of fires, such as needs of salvage logging and a potential reduction of harvestable timber volumes due to damages. Forest harvest management could emulate natural fire disturbance and help reduce fuel amounts to prevent intensive and large-scale fires in the future in areas where fires are most aggressively suppressed. 
    more » « less
  4. null (Ed.)
    Abstract The complexity of forest structures plays a crucial role in regulating forest ecosystem functions and strongly influences biodiversity. Yet, knowledge of the global patterns and determinants of forest structural complexity remains scarce. Using a stand structural complexity index based on terrestrial laser scanning, we quantify the structural complexity of boreal, temperate, subtropical and tropical primary forests. We find that the global variation of forest structural complexity is largely explained by annual precipitation and precipitation seasonality (R² = 0.89). Using the structural complexity of primary forests as benchmark, we model the potential structural complexity across biomes and present a global map of the potential structural complexity of the earth´s forest ecoregions. Our analyses reveal distinct latitudinal patterns of forest structure and show that hotspots of high structural complexity coincide with hotspots of plant diversity. Considering the mechanistic underpinnings of forest structural complexity, our results suggest spatially contrasting changes of forest structure with climate change within and across biomes. 
    more » « less